
Anytime MAPF via Large Neighbourhood Search
Clare Dang

pdang@sfu.ca
Jasleen Phangara
jphangar@sfu.ca

Lei Gong
gongleig@sfu.ca

Abstract—Multi-Agent Path Finding (MAPF) is the problem of
determining collision-free paths for moving multiple agents from
given start locations to their respective goal locations, in a grid-
like environment. There are two main categorizations of algo-
rithms for solving MAPF: (bounded sub)optimal algorithms that
find high-quality solutions but are inefficient for large problems,
and unbounded suboptimal algorithms that find solutions for
large problems efficiently but usually find low quality solutions. In
this project, we will be studying an anytime approach for solving
MAPF using Large Neighborhood Search (LNS), which attempts
to combine the best aspects of the two different categories; that
is, MAPF-LNS is able to compute initial solutions fast, find near-
optimal solutions eventually, and scale to very large numbers of
agents

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is the problem of deter-
mining collision-free paths for moving multiple agents from
given start locations to their respective goal locations, in a
grid-like environment. Since MAPF is an NP-Hard problem,
finding an optimal solution for a large enough MAPF problem
can take an extensive amount of time and memory. Whereas,
finding an optimal solution for a small enough MAPF problem
can be done with a reasonable amount of time and memory.

Hence, algorithms for solving MAPF problems can be
divided into two categories: (bounded sub)optimal algorithms
and unbounded suboptimal algorithms. Bounded suboptimal
optimal algorithms ensure that the cost of the solution returned
is at most as large as k · opt-soln, where k ≥ 1 and opt-soln
denotes the cost of the optimal solution. However, such
algorithms do not scale well for large numbers of agents as
an intractable amount of resources (i.e., time and memory) are
needed. In contrast, unbounded suboptimal algorithms scale
well for large numbers of agents as planning can be done fast
using predefined movement or agent ordering rules. But, the
solution returned from such algorithms can be of low quality
(i.e., far from the optimal solution cost) as there is no upper
bound on the cost of the returned solution.

In this project, we explore an anytime approach for solv-
ing MAPF using Large Neighborhood Search (LNS), called
MAPF-LNS[2], which attempts to combine the best aspects
of the two different categories. That is, MAPF-LNS is fast,
scalable, and near optimal since it is able to compute initial
solutions quickly, scale to very large numbers of agents, and
find near optimal solutions eventually (with enough time).

MAPF-LNS starts by finding an initial solution using an
existing non-optimal MAPF algorithm. Next, LNS[4] is used
to iteratively improve the quality of the solution. That is, for
each iteration while time is available, a subset of the agents

will be chosen to be replanned, holding the planned paths
of the remaining agents constant. LNS uses a neighborhood
selection heuristic to select a subset of agents with a cardinality
equal to a given neighborhood size. A modified version of a
MAPF algorithm is used to replan the subset of agents such
that they do not collide with the constant paths, as well as
each other. Once the paths for the selected subset of agents has
been replanned, if the new paths minimize the cost compared
to the old paths, then they will be added to the solution. The
algorithm will repeat this process until it runs out of time.

We evaluate MAPF-LNS by assessing performance of the
algorithm over various MAPF problem instances for increasing
numbers of agents. In particular, we experiment with different
neighborhood selection heuristics, neighborhood sizes, and
time limits to determine how different factors impact perfor-
mance of the algorithm.

II. IMPLEMENTATION

In this section, we outline the MAPF-LNS algorithm, as
well as, the algorithms used for the three key phases of MAPF-
LNS which are initial planning, neighborhood selection, and
replanning.

A. MAPF-LNS

Given a MAPF instance, we first find an initial solution P
using a MAPF algorithm. The algorithm used for finding the
initial solution can be any suboptimal MAPF algorithm which
is considered to be efficient. While time is available, we select
a subset of k agents, say Ak ⊂ A, where A is a set containing
all agents in the problem instance. Large neighborhood search
is used to select this subset of k agents. Then, we remove the
paths of the agents in Ak from P , and replan new paths for
them by calling a modified MAPF algorithm. The modified
algorithm will treat the remaining paths in P as constraints
when planning the paths for the agents in Ak, such that the
new paths for agents in Ak do not collide with the remaining
paths in P as well as each other. We then compare the old
paths to the new paths for the agents in Ak, and add the paths
which minimize the solution cost to P . Lastly, we repeat this
procedure until we run out of time. The resulting algorithm is
called MAPF-LNS, and the pseudocode for MAPF-LNS can
be found in algorithm 1.

B. Initial Planning: EECBS

For finding an initial solution we use Explicit Estimation
Conflict-Based Search (EECBS)[1] which is a bounded sub-
optimal search for MAPF. We choose to use EECBS as it

Algorithm 1 High-level MAPF-LNS
Input: MAPF Instance I , Set of Agents A, Neighborhood

size k, Time limit t
1: timer ← startT imer()
2: P ← findInitSoln(I, A)
3: while timer.timeElapsed() ≤ t do
4: Ak ← selectNeighborhood(I, A, k)
5: P−

k ← {Pai ∈ P | ai ∈ Ak}
6: P ← P \ P−

k

7: P+
k ← replan(I, P,Ak)

8: if cost(P+
k) ≤ cost(P−

k) then
9: P ← P ∪ P+

k

10: else
11: P ← P ∪ P−

k

12: end if
13: end while

can find suboptimal solutions reasonably fast which is the
ideal behavior we desire for initial planning in MAPF-LNS.
Pseudocode for EECBS can be found in algorithm 2 which
is taken from [1] as we will be using the author’s existing
implementation of EECBS. Since we could have chosen any
suboptimal MAPF algorithm for initial planning, we omit
the specific details of EECBS though we highlight a few
noteworthy features.

EECBS is a variant of CBS which uses an inadmissible
heuristic to estimate the cost of the solution of each unex-
panded node, and uses Explicit Estimation Search (EES) to
choose which unexpanded node to expand next. The heuristic
is computed using an online learning method for learning the
cost-to-go during search using the error experienced during
node expansion [3]. An advantage of this heuristic is that it
does not require preprocessing and allows for instance specific
learning. In addition, [1] includes CBS improvements such
as adding bypassing conflicts, prioritizing conflicts, symmetry
reasoning, and using the Weighted Dependency Graph (WDG)
heuristic to EECBS such that EECBS is able to significantly
outperform comparable algorithms.

C. Large Neighborhood Search

Large Neighborhood Search (LNS)[4] is a metaheuristic
used for finding better solutions when solving an optimization
problem by exploring neighborhoods to find subproblems to
solve which can improve the solution to the original problem.
In the context of MAPF-LNS, a neighborhood is defined to be
a set of agents whose paths are removed from a given solution.
So, each neighborhood corresponds to the subproblem of
planning the paths for a subset of agents while holding the
paths of the remaining agents constant. In algorithm 1, lines
4-12 implement LNS in MAPF-LNS.

More generally, LNS begins by selecting a neighborhood
of the problem to solve, assuming that there is an existing
solution to the problem (not necessarily optimal). Then, the
subproblem corresponding to the chosen neighborhood is
solved, producing a new solution to the problem. If the new so-

Algorithm 2 High-level search for EECBS
1: Generate root CT node R ▷ CT = constraint tree
2: computeWDGHeuristic(R)
3: pushNode(R)
4: while open is not empty do
5: P ← selectNode()
6: if P.conflicts = ∅ then
7: return P.paths
8: end if
9: if P is selected from cleanUp and the WDG heuristic

of P has not been computed yet then
10: computeWDGHeuristic(P)
11: pushNode(P)
12: continue
13: end if
14: conflictPrioritization(P.conflicts)
15: symmetryReasoning(P.conflicts)
16: conflict← chooseConflict(P.conflicts)
17: constraints← resolveConflict(conflict)
18: children← ∅
19: for constraint ∈ constraints do
20: Q← generateChild(P, constraint)
21: if P is not selected from cleanUp and
∀i |Q.paths[i]| ≤ w ·f i

min(P) and cost(Q) ≤ w ·lb(bestlb
and hc(Q) < hc(P) then

22: P.paths← Q.paths
23: P.conflicts← Q.conflicts
24: Go to line 6
25: end if
26: Add Q to children
27: end for
28: for Q ∈ children do
29: pushNode(Q)
30: end for
31: updateOneStepErrors(P, children)
32: end while
33: return ”No Solution”

lution is better than the old solution (i.e., maximizes/minimizes
the solution), then the new solution is kept, otherwise the old
solution is kept. This process can be repeated several times
as the solution is guaranteed to be no worse than the initial
solution we started with. Moreover, the quality of LNS is
dependent on the neighborhood selection method used. Hence,
we discuss the neighborhood selection methods considered in
our project next.

D. Agent-Based Neighborhood Selection

Agent-based neighborhood selection[2] selects an agent
whose path could be shorter if some other agents were not
blocking its way, as replanning them together has a chance
to reduce the overall costs of their paths. In algorithm 3,
we have described the pseudocode for this selection method.
First, an agent which is not in the tabu list is chosen, say
aj , such that the agent has the largest delay. The tabu list

is a globally maintained set which is initially empty but is
populated as the iterations of LNS proceed such that the same
agent won’t be repeatedly chosen for the initial agent in agent
based neighborhood selection. In addition, the delay is defined
to be the difference between the length of an agent’s path and
the distance between the agent’s start and goal locations. So,
a large delay indicates that an agent waits or is blocked by
many other agents when traversing its path.

Next, the neighborhood of agents, Ak, is initialized to the
selected agent aj . Then, while Ak contains less than k agents,
agent aj will perform a restricted random walk to find agents
that prevent it from reaching its target location at an earlier
point. The agents found in this walk will be added to Ak, until
the walk has terminated or Ak has k agents. Then, a new agent
will randomly be chosen from Ak to be aj and the process
repeats. The details of the random walk procedure are omitted
as it is beyond the scope of this project.

Algorithm 3 Agent-Based Neighborhood Selection
Input: MAPF Instance I , Paths of Agents P =

{P1, . . . , Pn}, Set of Agents A, Neighborhood Size k, Tabu
List tabuList

1: aj ← max{delay(Pi) | ai ∈ A \ tabuList}
2: tabuList← tabuList ∪ {aj}
3: if tabuList.size() = n or delay(Pj) = 0 then
4: tabuList← ∅
5: end if
6: Ak ← {aj}
7: while Ak.size() < k do
8: randomWalk(I, P, aj , Ak)
9: aj ← random vertex in Ak

10: end while
11: return Ak

E. Map-Based Neighborhood Selection

Map-based neighborhood selection[2] selects agents that
visit the same intersection vertex, i.e., a location on the map
which is traversed by more than one agent, as changing the
order in which the agents traverse an intersection vertex could
lead to different solution costs. In algorithm 4, we show the
pseudocode for this selection method. First, we determine all
the intersection vertices using the paths of the agents, and
randomly select one of the intersection vertices, say v. Then,
a queue is initialized containing v and the neighborhood of
agents, Ak, is initialized to the empty set.

Next, while the queue is not empty and Ak contains less
than k agents, we pop an element from the queue and set v to
this element. Then, if v is an intersection vertex, we add the
agents which visit v to Ak. Lastly, the vertices adjacent to v
are added to the queue, if the location exists in the map and it
has not previously been in the queue. This procedure repeats
until Ak contains k agents or every location in the map has
been visited (i.e., the queue is empty).

Algorithm 4 Map-Based Neighborhood Selection
Input: MAPF Instance I , Paths of Agents P =

{P1, . . . , Pn}, Set of Agents A, Neighborhood Size k

1: V ← findIntersections(P)
2: v ← random vertex in V
3: Q← initQueue()
4: Q.push(v)
5: Ak ← ∅
6: while !Q.isEmpty() and Ak.size() < k do
7: v ← Q.pop()
8: if isIntersection(v) then
9: getIntersectionAgents(v, P,Ak)

10: end if
11: for d ∈ {right, left, up, down} do
12: u← move(v, d)
13: if u ∈ I.map and u hasn’t been visited before

then
14: Q.push(u)
15: end if
16: end for
17: end while
18: return Ak

F. Random Neighborhood Selection

Random neighborhood selection[2] selects k agents uni-
formly at random, where k is the neighborhood size. Algo-
rithm 5 contains pseudocode for this selection method. Note
that the randomizer used in algorithm 5 reorders the agents
such that each possible permutation of the agents has equal
probability of appearance.

Algorithm 5 Random Neighborhood Selection
Input: Set of Agents A, Neighborhood Size k

1: L← A.toList()
2: randomize(L)
3: return L[0 : k − 1]

G. Adaptive LNS

Adaptive LNS[6] is a stronger variant of LNS which makes
use of multiple neighborhood selection heuristics by recording
their relative success in improving the current solution and
choosing the next neighborhood guided by the most promising
heuristic. In our context, adaptive LNS will be referred to as
adaptive neighborhood selection as the adaptive method will
choose the most promising neighborhood selection method
between agent-based, map-based, and random selection for
a given subproblem. For instance, the adaptive method may
choose agent-based selection for one iteration of LNS and
random selection for another.

Algorithm 6 contains pseudocode for the adaptive method
which is a modification of algorithm 1. The adaptive method
maintains a list of weights where each weight corresponds to a
neighborhood selection method, and the list is initialized to 1

for all entries. Then, in each iteration of LNS, a neighborhood
selection method will be chosen with probability

P (method i chosen) =
weight of method i
sum of all weights

.

So, the larger the weight, the higher the probability that a
method will be chosen. Once the method is chosen and the
new paths have been found, the weight for the chosen method
is updated according to how much the new paths improve the
solution quality (i.e., reduce the cost of the solution).

Algorithm 6 MAPF-LNS with Adaptive LNS
Input: MAPF Instance I , Set of Agents A, Neighborhood

size k, Time limit t
1: timer ← startT imer()
2: P ← findInitSoln(I, A)
3: W ← initWeights()
4: while timer.timeElapsed() ≤ t do
5: method← selectMethod(W)
6: Ak ← selectNeighborhood(I, A, k,method)
7: P−

k ← {Pai
∈ P | ai ∈ Ak}

8: P ← P \ P−
k

9: P+
k ← replan(I, P,Ak)

10: if cost(P+
k) ≤ cost(P−

k) then
11: P ← P ∪ P+

k

12: else
13: P ← P ∪ P−

k

14: end if
15: updateWeights(W,P−

k , P+
k ,method)

16: end while

H. Naive Neighborhood Selection

In addition to the prior methods, we include two naive
methods for neighborhood selection. The first method is to
select a consecutive subset of k agents from a circular array
of the agents, ordered lexicographically. For instance, suppose
the agents are labeled from 1, . . . , n, then on iteration j we
pick agents aj , . . . , aj+k to be in our neighborhood, where
the indices are taken modulo n. The pseudocode for this naive
method is shown in algorithm 7 which is a modified version
of algorithm 1.

The second naive method is to select the k agents which
have the highest cost paths, i.e., the k agents with the longest
paths. The pseudocode for this naive method is shown in
algorithm 8.

I. Replanning: Prioritized Planning

Lastly, we discuss the modified MAPF algorithm used
for replanning the paths of the agents in the neighborhood.
We use a modified version of prioritized planning with a
random priority ordering for replanning paths. That is, the
agent ordering is randomized, and the existing paths P are
added to the constraint set before prioritized planning proceeds
as expected. The pseudocode for replanning using prioritized
planning is shown in algorithm 9, where we assume the reader
is familiar with prioritized planning.

Algorithm 7 MAPF-LNS with Naive Selection
Input: MAPF Instance I , Circular Array of Agents A,

Neighborhood size k, Time limit t, Number of Agents n

1: timer ← startT imer()
2: P ← findInitSoln(I, A)
3: j ← 0
4: while timer.timeElapsed() ≤ t do
5: Ak ← A.getSubarray(j, j + k)
6: P−

k ← {Pai
∈ P | ai ∈ Ak}

7: P ← P \ P−
k

8: P+
k ← replan(I, P,Ak)

9: if cost(P+
k) ≤ cost(P−

k) then
10: P ← P ∪ P+

k

11: else
12: P ← P ∪ P−

k

13: end if
14: j = j + 1
15: end while

Algorithm 8 High Cost Neighborhood Selection
Input: Set of Agents A, Neighborhood Size k, Paths of

Agents P = {P1, . . . , Pn}
1: P ′ ← findHighCostPaths(P, k)
2: Ak ← {ai ∈ A | Pi ∈ P ′}
3: return Ak

III. METHODOLOGY

We use five problem instances from the MAPF benchmark[5]

instances, namely, random-32-32-20 of size 32x32, room-32-
32-4 of size 32x32, den312d of size 65x81, ht mansion n
of size 133x270, and Boston 0 256 of size 256x256. These
instances are chosen as they provide a variety of map difficulty
ranging from easy to hard for solving problem instances. In
addition, we use one random scenario per problem instance for
generating results as using all 25 random scenarios (or some
non-trivial subset) per problem instance for generating results
in each experiment causes the runtime of the experiments to
be in the multitude of hours. Note that the random scenario
picked per problem instance is consistent through the entire
experiment. In addition, we use 50, 100, and 150 agents for
varying the number of agents in each experiment; that is, each
experiment executes once for each number of agents, totalling
to three runs.

Since MAPF-LNS is an anytime algorithm, performance
cannot be measured in terms of runtime as the runtime is set

Algorithm 9 High-level Modified Prioritized Planning
Input: MAPF Instance I , List of Agents in Neighborhood

Ak, Paths of Agents P = {P1, . . . , Pn−k}
1: randomize(Ak)
2: constraints← buildConstraints(P)
3: return prioritizedP lanning(I, Ak, constraints)

by the user. Instead, we measure performance of MAPF-LNS
as the improvement of the solution quality defined to be the
percent of cost decreased from the initial solution to the final
solution. That is, the amount the solution cost decreased from
the initial solution to the final solution as a percentage. We
evaluate MAPF-LNS through the following four experiments.

A. Experiment 1: Neighborhood Selection

In experiment 1, we determine how the choice of the neigh-
borhood selection heuristic impacts performance of MAPF-
LNS. We compare performance of MAPF-LNS using agent-
based, map-based, random, and adaptive neighborhood selec-
tion over the selected problem instances. In particular, for each
problem instance, for each neighborhood selection heuristic
we use a time limit of 30 seconds and a neighborhood size of
5, over varying numbers of agents. Hence, we can determine
which neighborhood selection heuristic results in the highest
overall performance of MAPF-LNS, as well as, determining
if certain problem instances are better suited for a different
neighborhood selection heuristic.

B. Experiment 2: Neighborhood Size

In experiment 2, we evaluate how the neighborhood size im-
pacts performance of MAPF-LNS. We compare performance
of MAPF-LNS using neighborhood sizes of 2, 4, 8, and 16
over the selected problem instances. In particular, for each
problem instance, for each neighborhood size we use a time
limit of 30 seconds and adaptive neighborhood selection, over
varying numbers of agents. Thus, we can determine if there
is an optimal neighborhood size which results in the highest
overall performance of MAPF-LNS, as well as, determining
if certain problem instances are better suited for a different
neighborhood size.

C. Experiment 3: Time Limit

In experiment 3, we assess how increasing the time limit
impacts the performance of MAPF-LNS. We compare perfor-
mance of MAPF-LNS using time limits of 15, 30, 45, and
60 seconds over the selected problem instances. In particular,
for each problem instance, for each time limit we use a
neighborhood size of 5 and adaptive neighborhood selection,
over varying numbers of agents. Therefore, we can determine
whether increasing the time limit improves performance of
MAPF-LNS by a significant amount. In addition, we can deter-
mine which problem instances showed the most improvement,
meaning that MAPF-LNS is well suited for these instances.

D. Experiment 4: Naive Neighborhood Selection

In experiment 4, we assess how naive neighborhood selec-
tion heuristics compare to sophisticated neighborhood selec-
tion heuristics using performance impact on MAPF-LNS. We
compare performance of MAPF-LNS using the first naive ap-
proach, high cost naive approach, and adaptive neighborhood
selection over the selected problem instances. In particular,
for each problem instance, for each neighborhood selection
heuristic we use a time limit of 30 seconds and neighborhood

size 16, over varying numbers of agents. Hence, we can
determine if naive heuristics improve performance of MAPF-
LNS by an amount comparable to a sophisticated heuristic.
In addition, we can determine if there are problem instances
which are better suited for a naive heuristic than a sophisticated
heuristic.

IV. EXPERIMENTAL SETUP

We use the existing MAPF-LNS implementation which
is available at https://github.com/Jiaoyang-Li/MAPF-LNS and
we modify the implementation to include the naive neighbor-
hood selection heuristics. We use the existing implementation
because implementing MAPF-LNS requires multiple compli-
cated algorithms to be implemented as subroutines, which
all take significant amounts of time to implement. All parts
of MAPF-LNS are implemented in C++11. In addition, we
implement launch scripts using Python 3.8 for invoking each
of the previously described experiments. The experiments are
run on macOS 10.15.2 with Intel i5-8210Y (1.6 GHz) and
16GB memory available.

V. RESULTS

Note that in the following plots and discussion, the random
walk method is the agent-based selection method and the
intersection method is the map-based selection method.

A. Experiment 1: Neighborhood Selection

In figure 1, we have plotted the performance improvement
(%) of each problem instance for each neighborhood selection
heuristic over different numbers of agents. First, we notice that
for larger problem instances, such as Boston and ht mansion,
the magnitude of improvement is quite small. This is because
we used a 30 second time limit and neighborhood size of 5
which might not be well suited for larger instances as they
could require larger neighborhoods and more time for finding
a significantly better solution. In addition, we notice that the
performance improvement seems to increase as the number of
agents increases, which indicates that MAPF-LNS is able to
perform well as the number of agents grows.

Overall, we observe that the adaptive method appears to
be the best as, on average, this method produces the largest
performance improvement. Also, we notice that there are in-
stances where the performance improvement from the adaptive
method is less than one of the other methods. This occurs
when the performance improvement from the random, random
walk, and intersection methods are equivalent or close together
in value. For instance, in figure 1, for the random instance
with 100 agents, we see that the adaptive method improves
performance slightly less than the intersection method, but we
also see that all four methods improve performance by similar
amounts as the values are relatively close together.

B. Experiment 2: Neighborhood Size

In figure 2, we have plotted the performance improvement
(%) of each problem instance for each neighborhood size
over different numbers of agents. We observe that on average

Fig. 1. Performance improvement for varying neighborhood selection meth-
ods.

it appears that a neighborhood size of 8 seems to be the
best from our results, however there does not appear to be
an overall trend over all problem instances for neighborhood
size. In addition, we should not regard 8 as an optimal
neighborhood size as we see from the results that each problem
instance has specific trends for neighborhood size indicating
that neighborhood size should be determined on a case by case
basis.

In particular, we see that ht mansion and random have
higher performance improvement on average for neighborhood
size of 16. In addition, we observe that there are instances
where the performance improvement is relatively similar for
all neighborhood sizes, meaning that for such instances we
should choose the smallest neighborhood size as the heuristic
will compute faster and more iterations will be able to compute
within the time limit. For instance, in figure 2 for the Boston
instance with 100 agents, we see that the neighborhood sizes
all produce similar performance improvement, and so we
should use a neighborhood size of 2 for this configuration
of the problem.

C. Experiment 3: Time Limit

In figure 3, we have plotted the reduction of the solution
cost of each problem instance for each time limit over different
numbers of agents. That is, we have plotted the difference
between the initial and final solution cost. We observe that
for large numbers of agents, increasing the time limit does
appear to improve the quality of the solution as the solution

Fig. 2. Performance improvement for varying neighborhood sizes.

cost is reduced by a larger amount. However, for small
numbers of agents, increasing the time limit does not appear to
improve the solution quality by a significant amount. Hence,
we conclude that the time limit required for finding a good
solution depends on the number of agents in the problem. In
addition, we conclude that on average increasing the time limit
does improve the quality of the solution.

D. Experiment 4: Naive Neighborhood Selection

In figure 4, we have plotted the performance improvement
(%) of each problem instance for each selection method (First,
High Cost, and Adaptive) over different numbers of agents. We
observe that the naive methods do not perform comparably to
the adaptive method, as figure 4 depicts that the performance
improvement from using a naive method never exceeds the
performance improvement from using the adaptive method.
So, naive methods do not outperform sophisticated methods
nor is their performance relatively close to a sophisticated
method. In addition, it does not appear that any of our
problem instances are better suited for a naive method as the
performance improvement from the adaptive method is larger.

VI. CONCLUSION

In this project, we discussed MAPF-LNS and experimented
with different factors which impact the performance of the
algorithm over various problem instances. We concluded that
the adaptive neighborhood selection method led to the most
performance improvement of MAPF-LNS over varying num-
bers of agents. In particular, the adaptive method appears to

Fig. 3. Reduction of solution cost for varying time limits.

Fig. 4. Performance improvement for naive and adaptive selection methods.

always be the best for large numbers of agents. In addition,
we concluded that a neighborhood size of about 8 appears
to lead to the most performance improvement of MAPF-
LNS over varying numbers of agents. Notably, the fluctuation
in performance caused by varying the neighborhood size
is small relative to the fluctuation in performance caused
by varying the neighborhood selection method. Hence, we
conclude that the choice of the neighborhood selection method
has a greater impact on performance compared to the choice
of the neighborhood size.

Additionally, we concluded that longer time limits improve
the quality of the solution found by MAPF-LNS. Hence, it is
recommended that a longer time limit be used when possible,
though the solution found by MAPF-LNS with a short time
limit could still be sufficient (depending on the difficulty
of the problem instance and number of agents). Lastly, we
conclude that naive methods for neighborhood selection are
not comparable to sophisticated methods as the naive methods
perform very poorly compared to the sophisticated methods.

REFERENCES

[1] J. Li, W. Ruml, S. Koenig. EECBS: Bounded-suboptimal search for
multi-agent path finding. In AAAI, pp. 12353–12362, 2021.

[2] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, S. Koenig. Anytime Multi-
Agent Path Finding via Large Neighborhood Search. In IJCAI, pp. 4127-
4135, 2021.

[3] J. T. Thayer, A. J. Dionne, W. Ruml. Learning Inadmissible Heuristics
During Search. In ICAPS, pp. 250–257, 2011.

[4] P. Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In CP, pp. 417–431, 1998.

[5] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, R. Bartak. Multi-
agent pathfinding: Definitions, variants, and benchmarks. In SoCS, pp.
151–159, 2019.

[6] S. Ropke D. Pisinger. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation
Science, 40(4), pp. 455–472, 2006.

